Air Quality in Newport Beach

Field Measurements of Ambient Particulates and Associated Trace Elements and Hydrocarbons

Karleen A. Boyle, Ph.D.

Newport Beach Aviation Committee Meeting, September 27, 2010

Environmental & Regulatory Specialists, Inc. Newport Beach, CA 949-646-8958 Mobile: 202-270-6979 kboylesudol@verizon.net

Study Objectives

- To measure concentrations of particulate pollutants in the air at several locations in Newport Beach
- To characterize the chemical composition of the airborne particles collected
- To determine whether chemical profiles of particles from different sources are distinct

Why focus on particulates?

- Resident complaints of "soot" from airport
- Potential to adversely impact human health
- Considered a priority pollutant by EPA
- Regulated under the Clean Air Act

Properties of atmospheric particles

	PM _{2.5}		PM ₁₀
Particle Name	Ultrafine particles (UFP)	Fine particles	Coarse particles
Particle Size (aerodynamic diameter)	Below 0.1µm	Between 0.1μm – 2.5 μm	Between 2.5 μm- 10μm
Example	Viral cells	1/30 the diameter of a human hair	Dust or soot (black carbon)
Example of source	Jet engine exhaust	Diesel engine exhaust	Windblown dust
Atmospheric residence time	minutes to hours (before growing to fine size class) $\rightarrow \rightarrow$	days to weeks	minutes to days
Potential transport distance	10 miles (before converting to fine size class) $\rightarrow \rightarrow$	thousands of miles	Around 10 miles
Penetration of human respiratory system	Alveoli of lungs		Nasal passages

Sources of Urban PM

- Passenger vehicles
- Heavy duty diesel vehicles
- Tire and brake wear
- Construction activities
- Charbroilers/ Wood smoke
- Incinerators
- Boilers
- Stationary power turbines

Airport-associated PM sources

- Aircraft engines
- Ground support equipment (GSE) often diesel
- Aircraft auxiliary power unites (APUs)
- Aircraft tire and brake wear
- Emergency generators
- Airport ground transport
- Fuel storage tanks

JWA emission control practices

- Low emission electric vehicles and GSE on commercial ramp
- Ground-based electrical power in place of jetfueled APUs
- Fleet vehicles and taxi provider required to use cleaner-burning fuel (compressed natural gas)
- Electric charging stations for ground service equipment and airport vehicles

Study Design

- Field measurements of ambient PM_{2.5} at 6 field locations at different proximity to JWA and various freeways
- Concentrations of particle-associated metals, trace elements and hydrocarbons were measured
- Chemical profiles of locations were compared to test whether different emission sources were distinct

Stations upwind of JWA

Runway and adjacent stations

Runway and parking stations

33°41'09.56" N 117°51'43.79" W elev 10 m

Freeway comparison station

Freeway site detail

Study Methods

- Three samples were taken at each location
- Collected on 5 days between 8/3/09 and 8/19/09
- Sampling periods chosen to capture morning and evening freeway rush hours and periods of active flight operations at JWA
- Sampling hours: 0630-2300
- Total of 16.5 hours per sample
- Sampling periods ended before early morning hours to avoid brief periods of offshore flow

Data collected

- Concentrations of particles 2.5 μ m in diameter and smaller (PM_{2.5})
- Concentrations of particle-associated trace elements and metals
- Concentrations of particle-associated polycyclic aromatic hydrocarbons (PAHs)
- Simultaneous PM_{2.5} and PM₁₀ collection at Freeway, Parking and Runway

Air sampling equipment

- For inorganics and gravimetric mass: Paired Airmetrics Minivol air samplers with 1 teflon and 1 quartz filter
- Teflon filter analyzed for inorganics using X-ray Fluorescence
- Quartz filter analyzed for organic and elemental carbon using thermal/optical reflectance and transmittance (TOR/TOT) method
- For PAHs: Fine Particulate/Semi-Volatile Organic Compound (FPSVOC) sampling system

Air sampling array

Results

• Context:

- Study designed as preliminary assessment
- Minimal sample sizes employed (n=3)
- More data needed for definitive results
- However, several statistically significant trends were detected, even at a very low level of replication
- Suggests that real differences are present in PM2.5 characteristics between locations

PM_{2.5} Concentrations

Sampling Location

Mean concentrations of total particle mass in PM_{2.5} at sampling locations. Error bars denote standard error.

Carbon concentrations track trends in PM

Sulfate, nitrate and ammonium

Generating chemical profiles of sources

- Chemical profiles of all locations were compared to determine if any elements were specific to one location
- Two elements were found only at the Runway location: uranium and yttrium
- No elements were unique to the Freeway or Parking stations
- The only other element found at a single location was iridium, detected at the Boys' Club
- Elements were defined as potentially source-associated if their highest concentrations were measured at, or adjacent to, one of the source locations.

Statistical analyses

- Concentrations of individual elements were compared between study sites using 1-factor ANOVAs
- Results were considered significant if p=< 0.05
- If ANOVA results were significant, a posthoc Fisher's protected least significant differences (PLSD) test was used to identify differences among means due to location

Potential Runway-associated elements

- Ten elements were identified:
- Three elements demonstrated statistically significant effects of location: antimony, palladium and potassium
- Seven elements met the criteria, without statistically significant location effects: nickel, vanadium, hafnium, indium, molybdenum, silver and strontium

Potential Runway-associated elements

Hafnium

0.0005 0.0004 0.0003 0.0002 0.0001 0 Lifeguard Boy's Fire Runway Parking Freeway Club Station

Molybdenum

Indium

Potential Runway-associated elements

Vanadium

Potential Runway-associated elements showing significant effect of location

Potassium

Potential Freeway-associated elements

- Eight elements were identified:
- Two elements demonstrated statistically significant effects of location: terbium and titanium
- Six elements met the criteria, without statistically significant location effects: bromine, cerium, gold, rubidium, samarium, and zirconium

Potential Freeway-associated elements

Cerium

Bromine

Gold

Potential Freeway-associated elements

Rubidium

Zirconium

Samarium

Potential Freeway-associated elements showing significant effect of location

Terbium p=0.0001

Titanium p=0.0008

Comparing source profiles

Element

Source profiles vs. Lifeguard HQ

Element

Source profiles vs. Boys' Club

Element
Source profiles vs. Fire Station

Element

Source profiles vs. Parking

Particle-associated PAHs

- PAHs were divided into two categories: light and heavy
- Light PAHs: 38 compounds from 1+2ethylnaphthalene through xanthone
- Heavy PAHs: 70 compounds from acenaphthenequinone through dibenzo(b,K) fluoranthene

Heavy PAHs

- Concentrations of most heavy PAHs were higher at the Freeway location than at the Runway station
- This is to be expected because jet fuel is more highly refined than automobile and diesel fuels
- Two heavy PAHs were measured at higher concentrations at the Runway than at any other site: 7,12-dimethylbenz(a)anthracene and benzo(b+j+k)fluoranthene

Light PAHs

- Seven light PAHs were measured at higher concentrations at the Runway vs. Freeway station: 2-methylbiphenyl, 3-methylbiphenyl, 4-methylbiphenyl, bibenzene, btrimethylnaphthalene, c-trimethylnaphthalene and ethyl-1-methylnaphthalene
- As sites moved closer to the Runway, the number of runway-associated PAHs elevated in air samples increased

PAH source profiles vs. Lifeguard HQ

PAH

PAH source profiles vs. Boys' Club

PAH source profiles vs. Fire Station

PAH source profiles vs. Parking

Conclusions

- Ambient PM_{2.5} concentrations in Newport Beach are within federal air quality standards
- PM_{2.5} collected at runway and freeway locations differs in both chemical composition and relative concentrations of certain elements
- With further study, these profiles may be refined to produce chemical "fingerprints" that would allow particulate emissions to be associated with their source

Conclusions

- Previous studies (Westerdahl et al., 2008; Hu et al., 2009) have documented real-time peaks in aircraftrelated UFP over 900m downwind of airports
- Our results suggest that these peaks documented for individual take-offs and landings translate into measurably increased concentrations of particleassociated metals and PAHs when averaged over hours
- Our data suggest that aircraft particulate emissions may persist a significant distance from the airport – up to 10km for particle-associated sulfate and some light PAHs

Future Research

- Increase the statistical power of this data set and continue to develop chemical "fingerprints" associated with different emission sources by adding more sampling periods at present locations
- Add sampling stations at crosswind and downwind locations to better define the transport of aircraft-associated PM
- Add sampling stations in locations of concern to the community such as Upper Newport Bay
- Design "before/after" field sampling study to assess the effectiveness of mitigation strategies

Acknowledgements

- This study would not have been possible without the assistance of many people. Thank you to Mr. Homer Bludau, retired City Manager of Newport Beach, Mr. Dave Kiff, current City Manager and Mr. Thomas Edwards for the opportunity to carry out this study.
- Many thanks to Mr. Alan Murphy, JWA Airport Director, for supporting this work by allowing us to station air samplers on airport property. Thanks to Mr. Jack Jennrich for his assistance with the logistic challenges involved.